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SUMMARY

The numerical method used in this study is the moving particle semi-implicit (MPS) method, which is
based on particles and their interactions. The particle number density is implicitly required to be constant
to satisfy incompressibility. A semi-implicit algorithm is used for two-dimensional incompressible
non-viscous flow analysis. The particles whose particle number densities are below a set point are
considered as on the free surface. Grids are not necessary in any calculation steps. It is estimated that
most of computation time is used in generation of the list of neighboring particles in a large problem. An
algorithm to enhance the computation speed is proposed. The MPS method is applied to numerical
simulation of breaking waves on slopes. Two types of breaking waves, plunging and spilling breakers, are
observed in the calculation results. The breaker types are classified by using the minimum angular
momentum at the wave front. The surf similarity parameter which separates the types agrees well with
references. Breaking waves are also calculated with a passively moving float which is modelled by
particles. Artificial friction due to the disturbed motion of particles causes errors in the flow velocity
distribution which is shown in comparison with the theoretical solution of a cnoidal wave. © 1998 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The moving particle semi-implicit (MPS) method was developed for incompressible flow with
free surfaces [1–3]. In the MPS method fluids are represented by particles. Governing
equations are discretized by particle interaction models the authors have developed. Grids are
not necessary. A semi-implicit algorithm is employed to simulate incompressibility. Basic
problems were solved to verify the particle interaction models used in the MPS method [1–3].
The weight function which was used in the particle interaction models was improved to
enhance the numerical stability of the MPS method [4]. Collapse of a water column was solved
and compared with an experiment. The shape of free surfaces agreed well with the experimen-
tal result, even if fragmentation and coalescence of the fluid occurred.

In the MPS method the computation time is relatively short because all particle interaction
models developed are macroscopic and deterministic. Nevertheless, the MPS method requires
additional computation time for the generation of the neighbor list, in which the neighboring
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particle numbers are recorded. Distances of all pairs of particles should be calculated to
generate the list. Since this calculation requires the scale of N2 operations in each time step, it
is dominant for the computation time in large problems. In the present study, an algorithm is
proposed to reduce the count of operations to the scale of N1.5.

Free surface flows have been solved by numerical methods using grids. It has been difficult
to calculate breaking waves because fluid fragmentation and coalescence occur on the free
surface. Breaking waves were analyzed with stationary grids [5]. The free surface was
represented by a polygon composed of segments, the motion of which was calculated in each
time step. Overturning of a wave was successfully calculated, but subsequent coalescence of the
fluid was not calculated. Calculation procedures of the cells involving the segments were
complicated. A plunging breaker was calculated by the marker-and-cell (MAC) method [6].
The markers representing the existence of the fluid move according to the flow field, which is
solved using the grid. The coalescence of the overturning fluid was calculated by markers. The
MAC method was used with unstructured grids to calculate free surface flows in a curved tank
[7]. In the MAC method, fluid fragmentation and coalescence on the free surfaces can be
solved, although the cells involving markers still need complicated treatment. The volume-of-
fluid (VOF) method was applied to free surface flows with fluid fragmentation [8]. Breaking
waves were analyzed using the VOF method [9,10]. A scalar quantity representing the volume
of fluid is introduced to a stationary grid. The free surface is not clear due to the numerical
diffusion derived from the advection terms of the scalar quantity. The calculation procedure of
the cells involving the free surface is also complicated. Interactions between non-linear waves
and permeable submerged breakwaters were calculated, but wave breaking was not dealt with
[11,12].

In the present paper, numerical simulation of breaking waves using the MPS method is
presented. The relation between the breaker types and the surf similarity parameter is
compared with the experiments in References [13,14]. The experiments were carried out using
wave tanks. One side of the tank had a piston which generated waves. These waves travelled
to the slope on the other side. Breaking waves with a passively moving float are also calculated
to show the possibilities of the MPS method for fluid–structure interaction problems with free
surfaces. Two-dimensional non-viscous incompressible flows are analyzed in this study.

2. NUMERICAL METHOD

2.1. Go6erning equations

Governing equations are expressed by conservation laws of mass and momentum. Incom-
pressible non-viscous flows are considered in this study:

(r

(t
=0, (1)

Du
Dt

= −
1
r

9P+ f, (2)

where, r denotes the density, P the pressure, u the velocity, and f the external force.
The mass conservation equation is represented by density, while velocity divergence is

usually used in the finite difference method. The left side of Equation (2) is the Lagrangian
time differentiation involving advection terms. In MPS the advection terms are directly
incorporated into the calculation by moving particles. Only gravity is considered as the
external force. Two-dimensional problems are solved in this study.
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2.2. Particle interaction models

A particle interacts with its neighboring particles covered with a weight function w(r), where
r is a distance between two particles. The weight function employed in this study is as follows
(Figure 1):

w(r)=
>re

r
−1

0

05rBre

re5r
. (3)

Interactions are restricted to a finite distance re. Thus, a finite number of neighboring particles
are related to the interactions. The operation count of interactions is the scale of NM, which
saves the computation time in large problems. Here, N is the total number of particles and M
is the average number of neighboring particles within a distance of re ; actually the number of
neighboring particles varies around M. If the weight function is not limited with respect to r,
the operation count is the scale of N2. Another important aspect of the weight function is that
it is infinity at r=0. This is good for avoiding clustering of particles, which is explained later.

When a particle i and its neighbors j are located at ri and rj, particle number density is
defined as,

�n�i= %
j" i

w(�rj−ri �) (4)

The number of particles in a unit volume, rn, can be approximated by the particle number
density:

�rn�i=
�n�i&
w(r) d6

. (5)

The denominator of the right side of Equation (5) is the integration of the weight function over
the whole area. This integration is constant if re is fixed. Then the fluid density, r, is expressed
as,

Figure 1. Weight function.
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Figure 2. Concept of gradient model.

�r�i=m�rn�i=
m�n�i&
w(r) d6

, (6)

where m denotes mass of a particle. Equation (6) shows that the fluid density is approximately
proportional to the particle number density. For incompressible flow the fluid density is
required to be constant; this is equivalent to the particle number density being constant. The
constant value of the particle number density is denoted by n0.

When multiple materials of different densities are calculated simultaneously, the mass m is
changed and the particle number density n0 is kept constant.

The gradient operator is modelled using the weight function. A gradient vector is evaluated
between two neighboring particles i and j as (fj−fi)(rj−ri)/�rj−ri �2, where f is a physical
quantity. The gradient vector at ri is a weighted average of these vectors (Figure 2):

�9f�i=
d
n0 %

j" i

�fj−f %i
�rj−ri �

(rj−ri)w(�rj−ri �)n, (7)

where d is the number of space dimensions. In Equation (7) f i% is used in place of fi. If the
configuration of neighboring particles is isotropic, Equation (7) is not sensitive to the absolute
value. Then, any value can be used for f i%. Actually, the configuration is not isotropic in
general. Thus, the value of f i% is calculated by

f %i=min(fj) for {j �w(�rj−ri �)"0}, (8)

in the present study. This means that the minimum value is selected among the neighboring
particles within the distance of re. Using Equation (8), forces between particles are always
repulsive because fj−f i% is positive. According to the authors’ experiences, this is good for the
numerical stability.

The Laplacian operator is modelled in a transient diffusion problem. Part of a quantity
retained by a particle i is distributed to neighboring particles j using the weight function
(Figure 3):

Dfi� j=
2 dnDt

n0l
fiw(�rj−ri �), (9)

where n is diffusivity. A parameter l is introduced so that the variance increase is equal to the
analytical solution:
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l=
&

V

w(r)r2 d6
,&

V

w(r)d6 (10)

Diffusion is a linear process, therefore, distributions from one particle to the others can be
superposed. Superposition of Equation (9) with respect to j leads to a model of the Laplacian
operator:

�92f�i=
2d
n0l

%
j" i

(fj−fi)w(�rj−ri �). (11)

This model is conservative because the quantity lost by a particle i is gained by particles j.
Using Equation (11), the Laplacian operator is discretized to simultaneous linear equations
with respect to fi. The central limit theorem guarantees that the iteration of a discretized
distribution approaches Gaussian, which is the analytical solution of the transient diffusion
problem, providing the variance increase of this distribution is the same as that of the
analytical solution.

2.3. Modelling of incompressibility

Incompressibility is represented by keeping the particle number density constant. Here it is
assumed that the particle number density n* deviates from n0. The particle number density is
to be modified to n0 by n %:

n*+n %=n0. (12)

The continuity equation is

1
r

dr

dt
+9 ·u=0. (13)

In the MPS method, density is approximated by the particle number density, as shown in
Equation (6). Thus, the modification of the particle number density n’ is related to the
modification of the velocity u% as,

1
Dt

n %
n0= −9 ·u%. (14)

The modification of the velocity is derived from the implicit pressure term in the momentum
conservation equation in the same way as the simplified MAC (SMAC) method [15]:

Figure 3. Concept of Laplacian model.
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u%= −
Dt
r

9Pn+1. (15)

Substituting Equations (14) and (15) into (12), we have a Poisson equation of pressure:

�92Pn+1�i= −
r

Dt2

�n*�i−n0

n0 . (16)

The right side of Equation (16) is the deviation of the particle number density, while it is
usually divergence of the velocity vector in the finite difference method. The left side of
Equation (16) is discretized to simultaneous linear equations, using the present Laplacian
model, Equation (11). The simultaneous linear equations are solved using the incomplete
Cholesky decomposition conjugate gradient (ICCG) method [16]. The correction of the
velocity vector is calculated by substituting the pressure field into Equation (15). The right side
of Equation (15) is discretized using the present gradient model, Equation (7).

In this study, different sizes of the weight function are used. The size which is used for the
particle number density and the gradient model is re=2.1l0, where l0 is the distance between
two adjacent particles in the initial configuration. The value of 2.1 was selected to avoid the
concentration of particles near the free surfaces [4]. On the other hand, the size which is used
for the Laplacian model is re=4.0l0. The value of 4.0 was selected by the balance between
computation time and accuracy [4].

The weight function used here, Equation (3), is infinity at r=0. With this property the
particle number density increases to infinity when the distance between two particles decreases
to zero. This leads to a stronger repulsive force between the closer particles through the
Poisson equation of pressure. Therefore, clustering of particles is effectively avoided. On the
other hand, the particle number density remains a finite value if the weight function is not
infinity at r=0. Two particles can occupy the same position with a finite value of the particle
number density. This situation is permitted without repulsive forces when w(0)Bn0. Thus,
clustering is likely to occur.

The flowchart of the calculation algorithm is shown in Figure 4. First, the source terms are
explicitly calculated to obtain temporal velocities. Temporal co-ordinates of particles are
explicitly calculated by moving particles with the temporal velocities. Next, the Poisson
equation of pressure is solved by ICCG with the temporal particle number densities. Finally,
new velocities and co-ordinates are obtained from the pressure gradient terms. This algorithm
is semi-implicit like the SMAC method [15].

2.4. Boundary conditions

Since no particles exist in the outer region of a free surface, the particle number density
decreases at particles on the free surface. Thus, a particle which satisfies

�n�i*Bbn0 (17)

is considered as on the free surface, where b is a parameter. In this study b=0.95. This value
was selected by a test calculation [4]. Almost the same solution was obtained between b=0.8
and 0.99. A Dirichlet boundary condition of pressure is given to this particle. It is not
necessary to outline the free surface in this model. Fragmentation and coalescence of the fluid
can be calculated only with this simple rule.

The solid wall boundary condition is simply represented by fixed particles. Three layers of
fixed particles are placed in this study. Velocities are always zero at the fixed particles.
Pressures are calculated at the particles on the first inner layer to repel the fluid particles from
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Figure 4. Algorithm of the MPS method.

the wall. Particle number densities are needed for the pressure calculation at theses particles.
Since re=2.1l0, two other layers of fixed dummy particles are located outside of the first layer
to keep the particle number density around n0. Pressures are not calculated at these dummy
particles on the outer layer.

2.5. Passi6ely mo6ing solid

A passively moving solid is represented by particles with a fixed relative configuration. When
the solid consists of particles i, relationships among co-ordinates of solid particles ri, the centre
of solid rg, relative co-ordinates of solid particles qi and the moment of inertia I are represented
by

rg=
1
n

%
n

i=1

ri (18)
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qi=ri−rg, (19)

I= %
n

i=1

�qi �2 (20)

In each time step the solid particles are calculated using the same procedure with the fluid
particles at first. Next, translation and rotation velocity vectors of the solid are evaluated by

T=
1
n

%
n

i=1

ui, (21)

R=
1
I

%
n

i=1

ui×qi. (22)

Finally, the velocity vectors of the solid particles are replaced by those of the solid motion:

ui=T+qi×R. (23)

The fluid particles are affected by this motion through the incompressibility calculation in the
next time step. This means that the incompressibility condition is temporarily violated.

In this calculation model, the same calculation procedure is applied to both fluid and solid
particles at first, and the additional procedure is applied to the solid particles only. If the
additional procedure is not applied to the solid particles, they behave as another fluid
component.

2.6. Algorithm for list generation

In the MPS method each particle needs a list of neighbors within the distance of re. A
neighbor of a particle i is identified when the distance from the particle i is less than re. The
whole list, which should be updated in each time step, requires the scale of N2 operations for
the calculation of distances between all pairs of particles, where N is the number of particles.
The list generation is dominant for the computation time in large problems involving many
particles.

An algorithm to decrease the count of operations is proposed here. Each particle has two
lists; one is for neighbors within the distance of re and the other is for candidates of neighbors.
A particle is recorded as a candidate when the distance is less than re+h, where h is an
additional distance. Though this calculation also needs the scale of N2 operations, the list can
be updated in each k time steps. The list of neighbors is updated using the list of candidates
in each time step. This needs NMC operations, where MC is the average number of candidate
particles.

Figure 5 shows the CPU time for the list generation with different k. The total number of
particles is 2418. The computer is SGI Indy equipped with R4400 (200 MHz). The total CPU
time has a minimum point, in this case, at kopt=7. On the other hand, the CPU time needed
for the direct generation of the neighbor list from the distances between all pairs of particles
is almost the same as that of k=1 in Figure 5. The proposed algorithm with kopt needs half
the CPU time than that of k=1. In general, kopt is proportional to N0.5M−0.5. The derivation
is specified in the Appendix.

Table 1 shows the principal routines for the CPU time in the MPS code. The CPU time, its
fraction to the total and the scale of operation count are provided. The calculation is carried
out with the proposed algorithm for the list generation using kopt. The total number of
particles is 2418. The most time consuming part of the MPS code is the solver of the Poisson
equation of pressure. This part is further divided into three principal steps: matrix generation,
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Figure 5. CPU time for neighbor and candidate lists.

incomplete Cholesky decomposition and iteration calculation. The most sensitive routine to
the number of particles is the iteration calculation which requires the scale of N1.5M0.5

operations. The proposed algorithm for the list generation has the same scale. Therefore, the
list generation is no longer dominant for the CPU time in large problems.

3. ANALYSIS OF BREAKING WAVES

3.1. Calculation conditions

The geometry is shown in Figure 6. The calculation is two-dimensional. The fluid is water.
Dimensions of the geometry are described in the figure. Viscosity is neglected in this
calculation.

Table 1. CPU time of principal routines per time step in the MPS code with 2418
particles

CPU time [s] (fraction) Scale of operation countRoutine

NM0.185 (0.06)Matrix generation
NM20.974 (0.31)Decomposition

1.480 (0.47)Iteration N1.5M0.5

0.188 (0.06)List generation N1.5M0.5

NMOthers 0.334 (0.10)

Total 3.161 (1.00)

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 751–769 (1998)
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Figure 6. Calculation geometry of breaking waves.

Figure 7. Initial configuration of particles; 2375 particles for tan b=0.1.

The Ursell parameter is defined as,

Ur=
HL2

h3 , (24)

where H denotes the wave height, L the wave length and h is the depth of water. The following
relation can be used for the long wave length:

L=T
gh, (25)

where T denotes the wave period and g is the acceleration of gravity. In the present
calculation, h=0.1 m, H$0.05 m and T=1.0–3.2 s. Thus, the Ursell parameter ranges from
50 to 500.

When the Ursell parameter is above 25, cnoidal waves are a good approximation as finite
amplitude surface waves [11,12]. A first-order approximation of the cnoidal waves is the
K−dV equation, which is not used in this study. A third-order approximation was obtained
by Nishikawa et al. [17–20]. The shape of the free surface and flow velocity components are
calculated from the third-order approximation using a computer code in this study.

The waves are generated by oscillating a vertical wall. The amplitude of the oscillation is
vertically changed to follow the velocity profile of the cnoidal wave. It is easy to control the
motion of the wall like this in the MPS method, because the wall is also represented by
particles. With this fine control of the vertical wall, the cnoidal waves are formed in a short
entrance length. This saves the computation time and storage.

Calculations are carried out with two slopes, tan b=0.1 and 0.075. The wave length L0 is
changed from 1.0 to 3.2 m, while the wave height H0 is little changed around 0.05 m because
smaller waves are not suitable for accuracy and larger ones are out of the theory of cnoidal
waves. Here, subscript 0 denotes the offshore values. The surf similarity parameter is defined
as

j=
tan b


H0/L0

, (26)

which is used for the classification of breaker types. The total number of particles used is 2375
and 2655 for tan b=0.1 and 0.075, respectively. Dependency on the particle number was not
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Table 2. Calculation conditions; tan b=0.1

H0 [m]L0 [m]Period [m] j

0.0564 0.4191.0 0.989
0.4260.05440.9891.0

1.088 0.05721.1 0.436
1.187 0.06301.2 0.434

0.05771.286 0.4721.3
0.0572 0.4921.4 1.385
0.0585 0.5041.5 1.484

1.681 0.05581.7 0.549
1.978 0.0615 0.5672.0

0.0548 0.6012.0 1.978

investigated in this study. The initial particle configuration is shown in Figure 7. All cases
calculated here are summarized in Tables 2 and 3.

The shapes and horizontal velocity profiles of the generated waves are compared with the
analytical solutions in the entrance region before the slope. A typical example (tan b=0.l,
L0=1.1, H0=0.0572) is shown in Figure 8. Reflections of the waves are not influential in the
calculation because only 3–4 waves are generated. The particles which are regarded as on the
free surface are plotted in Figure 8(a). We can see that these particles are enveloped by the
analytical solution. The wave shape agrees with the analytical solution. However, the velocity
profile shows a difference near the bottom wall as shown in Figure 8(b). This difference is due
to the friction with the bottom wall. The friction is derived from the roughness of the wall
represented by particles. The fluid particles near the bottom wall go up and down depending
on the configuration of the wall particles. This leads to an artificial friction. This friction can
occur in the fluid as well. Errors derived from this friction have not been assessed yet.

3.2. Results

Motion of the wave generator and calculation results of typical plunging and spilling
breakers are shown in Figures 9 and 10, respectively. These are the second waves generated by
the moving wall, because the first waves show different behaviours with the following waves.
In Figure 9 the wave is distorted to be asymmetric on the slope and overturning of the wave

Table 3. Calculation conditions; tan b=0.075

Period [m] L0 [m] H0 [m] j

0.989 0.0526 0.3251.0
0.3670.05361.2861.3

0.0571 0.3691.4 1.385
0.0584 0.3781.5 1.484

1.582 0.0573 0.3941.6
1.7 1.681 0.0564 0.409

0.05491.8 0.4271.780
0.05341.9 0.4451.879

0.4430.06252.1762.2
2.4 0.0638 0.4582.374

0.5620.05643.1653.2

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 751–769 (1998)
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(b) Profile of the horizontal velocity component at the wave centre

Figure 8. Generated non-linear wave (tan b=0.1, L0=1.1 m, H0=0.0572 m).

front occurs. This is the typical motion of plunging breakers. A line segment drawn from a
particle means a velocity vector. We can see large velocities at the top of the wave front. The
distortion of the wave is enhanced by the preceding wave which returns offshore on the slope.
Thus, the overturning is more likely to occur in the second and following waves. In Figure 10,
such distortion is not observed. The wave runs up on the slope by keeping its shape symmetric.
The returning flow of the preceding wave is weaker. This is recognized as a spilling breaker.

3.3. Classification of breaker types

To classify the breaker types objectively, an angular momentum of the wave front is
introduced. The particles in two regions of the radius re are used (Figure 11). One region A1

is at the top of the wave and the other A2 is at L0/20 ahead. The angular momentum is defined
as

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 751–769 (1998)
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v=
1
N

%
i�A 1,A 2

ri×ui (27)

where N is the number of particles in A1 and A2. Vectors ri and ui are the positions and the
velocities of the particles i, respectively. The origin of the position vectors is the centre between
A1 and A2. It is expected that this angular momentum is largely negative in plunging breakers.
Figure 12(a) shows the change of the angular momentum of the plunging breaker. The angular
momentum changes from a small positive value to a large negative value. This change occurs
abruptly at the breaking point. On the other hand, it stays around 0.0 in the spilling breaker
as shown in Figure 12(b).

Figure 13 shows the minimum values of the angular momentum in all cases calculated in this
study. Although the calculation results are scattered, we can see that the minimum angular
momentum decreases when the surf similarity parameter, j, increases. The larger slope,
tan b=0.1, leads to larger angular momentums. These tendencies agree with experiments
[13,14]. The value v=−0.006 is selected as the critical value which classifies the plunging and
spilling breakers. When the minimum angular momentum is smaller than the critical value, the
breaker type is recognized as plunging. This classification corresponds to the typical behaviour
of the plunging breaker: asymmetric shapes and overturning at the wave front.

The breaker types are plotted with the wave steepness, 
H0/L0, and the slope, tan b, in
Figure 14. Two experimental results are also included in the figure [13,14]. These experiments
were carried out using wave tanks. One side of the tank had a piston which generated waves.
These waves travelled to the slope on the other side. When tan b=0.1, the critical value is
j=0.45 in this study. This agrees with Galvin’s result [14], but is a little larger than
Patrick–Wiegel’s result [13] of j=0.40. When tan b=0.075, the critical value is not clear in
the present study. Both breaker types appear in j=0.35–0.45. This transition zone exists
between two experimental results. In these experiments, classification of the breaker types was
qualitatively carried out by observation. In fact, it was written in Galvin’s paper [14] that

Figure 9. Plunging breaker and motion of the wave generator (tan b=0.1, L0=1.7 m, H0=0.0558 m, j=0.549);
time interval=0.1 s.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 751–769 (1998)
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Figure 10. Spilling breaker and motion of the wave generator(tan b=0.1, L0=1.0 m, H0=0.0544 m, j=0.426); time
interval=0.1 s.

transitional zones were observed. Consequently, the present calculation results agree with
experiments in references.

3.4. Breaking wa6es with a passi6ely mo6ing float

A floating solid whose density is half of that of water is added to the geometry. The solid
consists of 5×5 particles. Initially the float is located above the free surface. When the
calculation starts, the float drops into the water due to the gravity. The parameters of

Figure 11. Definition of angular momentum at the wave front.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 751–769 (1998)
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Figure 12. Change of angular momentum at the wave front.

generated waves are tan b=0.1, L0=1.7 m and H0=0.0558 m. This condition is in the region
of plunging breakers.

The calculation result is shown in Figure 15 which has five frames with a time interval of 0.2
s. The float is moving offshore with the returning wave in the first frame. The next wave is
pushing the float in the second frame. The float is a little rotated by the wave. The float goes
up to the wave surface and moves inshore in the third frame. The wave goes faster than the
float and the float goes down to the bottom in the following frames. Since friction between the
wall and the float is not considered, the float does not stick to the bottom. The float soon
begins to move offshore again. This process is repeated when the next wave comes.

The MPS method has possibilities for the analysis of moving interfaces between solids and
fluids as well as free surfaces, based on simple calculation models using particles.
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Figure 13. Relation between the minimum angular momentum and surf similarity parameter.

4. CONCLUSIONS

The moving particle semi-implicit (MPS) method is applied to numerical analysis of breaking
waves. A calculation model of a passively moving solid is developed to analyze interactions
between waves and a float. A list generation algorithm is proposed. Two lists for neighbors
and candidates are used in this algorithm. The scale of operation count is reduced from N2.0

to N1.5.
Numerical calculation of breaking breaks on slopes is carried out using the MPS code.

Waves are generated by oscillating a vertical wall, the amplitude of which is vertically changed
to follow the cnoidal waves. Shapes of the generated waves agree with the analytical solutions
with a short entrance length. The flow velocities near the bottom wall are smaller than the
analytical solutions because of the friction with the bottom wall, which is represented by layers
of particles.

Figure 14. Classification of breaker type.
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Figure 15. Breaking waves with a floating solid; time interval=0.2 s.

Spilling and plunging breakers are observed in the calculation results. The angular momen-
tum at the wave front is introduced as a parameter to classify the types of breakers. Plunging
breakers occur when the wave steepness is smaller or the slope is steeper. The critical value
which separates two breaker types agrees with the experiments in references. The MPS code is
also applied to breaking waves with a passively moving float. It is successfully calculated that
the float repeatedly moves offshore and inshore.

The MPS method, which is fully based on the Lagrangian description, is applicable to
incompressible flows with free surfaces even if fluid fragmentation and coalescence occur. This
method has possibilities for fluid–structure interactions when there is a large boundary
movement. The MPS method can be easily extended to three dimensions because all particle
interaction models are based on the distance between two particles. However, artificial friction,
which is derived from the disturbed motion of particles, causes errors which have not been
assessed yet.
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APPENDIX A. OPTIMIZATION OF THE LIST GENERATION ALGORITHM

Two lists are used in this algorithm; one is for neighbors within the distance of re and the other
is for candidates of neighbors within the distance of re+h. The list of neighbors is updated in
each time step from the list of candidates. The list of candidates is updated in each k time steps
from all particles. Thus, the relation between h and k can be obtained so that all particles
entering within the distance of re should be recorded in the list of candidates.
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Since the motion of particles is explicitly calculated in the MPS method, the time step is
restricted by the Courant condition for numerical stability. In this study the Courant limit C
is 0.2:

C=
Dtumax

l0
=0.2, (A.1)

where l0 is the distance between two adjacent particles in the initial configuration. With the
Courant limit, the distance between a pair of particles can decrease by

Dr=2Cl0 (A.2)

at most in one time step. Thus, all neighboring particles are still recorded in the list of
candidates for k time steps if

h=2kCl0. (A.3)

The number of candidate particles increases with k:

Mc=
�re+2kCl0

re

�d

M. (A.4)

where d is the number of space dimensions and M is the number of neighboring particles. The
computation time of the list generation of neighbors is

tn=a
�re+2kCl0

re

�d

NM, (A.5)

while that of the list generation of candidates per time step is

tc=b
1
k

N2. (A.6)

Here a and b are constants. The total computation time is

t= tn+ tc$a
�

1+
2dkCl0

re

�
NM+b

1
k

N2, (A.7)

where higher order terms with respect to d are neglected. Equation (A.7) has a minimum point
at

kopt=
' breN

2adCl0M
. (A.8)

The CPU times of list generation of neighbors and candidates are approximately proportional
to NMk and N2k−1, respectively, as shown in Equation(A.7). With kopt, which is proportional
to N0.5M−0.5, the count of operations has the scale of N1.5M0.5 for both list generation
calculations.
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